

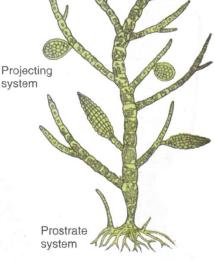
LIFE HISTORY OF Ectocarpus

Dr. Urmi Roy

Occurrence

- □ *Ekos*: external and *kapos*: fruit
- □ Most primitive of all the members of the class Phaeophyceae
- □ 16 species are found in India.
- □ Marine habitat
 - Free-floating:
 - *E. spongiosus* and
 - E. conigerare,
 - Epiphytes (on other sea plants): on *Laminaria* and *Fucus*
 - *E. breviarticulatus* and
 - *E. coniferus*
 - Endophytic:
 - E. dermonematis
 - Epizoic species:
 - *E. fasciculatus* grows on the fins of fishes.
- □ They are commonly available in both tropical and temperate seas.
- □ In India they are commonly found in the western coast.

Free floating

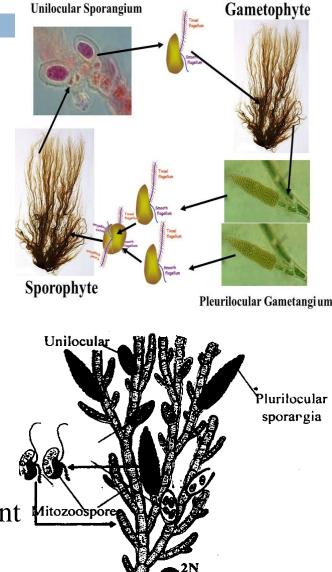


Epiphytic on Fucus

Plant Body

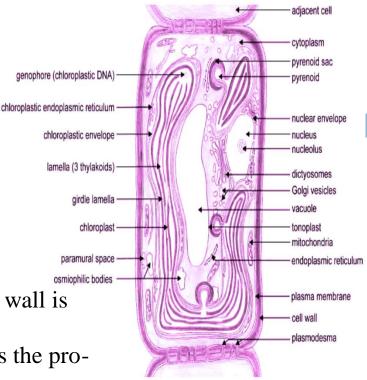
Heterotrichous: two different parts:

- The prostrate creeping system
 - It functions as a holdfast,
 - Rhizoid-like
 - Penetrate the substrate
 - Consists of septate, irregularly branched filaments.
 - This system penetrates the host tissues in epiphytic conditions.
 - Poorly developed: in free floating species.
 - Some develop multicellular hairs from the prostrate system (*E. filiferetc*).
- □ <u>The erect filamentous, bulbous, or foliose stage</u>.
 - Develops from the prostrate system
 - This remains free-floating.
 - It is much **branched** and well-developed.
 - Both the main axis and branches are **uniseriate** (monosiphohous),
 - But the lower part may become multiseriate (polysiphonous) e.g., *E. geminifructus*.



Thallus Showing Habit

Plant Body.....


Two types of plant bodies are differentiated genetically

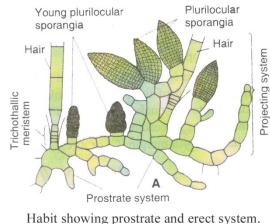
- One is haploid and
- Other one is diploid.
- □ Similarity
 - Both haploid and diploid plants are morphologically identical
 - The haploid and diploid phases are both filamentous.
- Dissimilarity
 - The diploid filaments have longer cells than the haploid filaments.
 - The diploid plants produce unilocular and plurilocular sporangia either on the same plant or on separate plants.

Cell Structure

- The cells are rectangular.
- Cell wall is differentiated into
 - Outer pectic and
 - Inner cellulosic layers.
- □ The cell wall is thick, mucilaginous.
- The characteristic **gelatinous** substance present in the cell wall is composed of **algin** and **fucoidin**.
- Inner to the wall, cell membrane is present which encircles the protoplast.
- □ The **protoplast** contains one central **nucleus**.
- Ribbon-like or band-shaped chloroplast (chromatophores) with pyrenoid.
- □ The number and shape of chromatophore varies with species.
- □ The **pyrenoid** is stalked, pear-shaped.
- □ The cytoplasm contains many **vacuoles** called as **physodes**, which contain polyphenols, functioning as lysosomes.
- The cells of **haploid** filaments are comparatively **shorter** in length than diploid filaments.

Photosynthetic pigment

- □ Pigments are chlorophyll a, chlorophyll c,
- \square β -carotene and **fucoxanthin**.
- □ The fucoxanthin masks the chlorophyll.
- □ This gives the characteristic **brown** colouration.
- Pyrenoid-like bodies-are associated with the chromatophores.
- □ All other eukaryotic organelles are present.

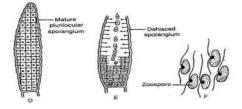

Cytoplasm

- The cytoplasm contains many vacuoles, which are called *physodes*.
- The physodes contain polyphenols, probably function as lysosomes.
- Morphologically, haploid and diploid vegetative filaments are
 - Almost alike, but
 - The cells of haploid filaments are comparatively shorter in length than the diploid filaments.

Growth

□ In projecting system :

- It is intercalary (apical growth: *Chara*)
- It is confined to certain areas of the filaments *i.e.* to the base of one or several filaments: *trichothallic meristem*.
- It increases the length of the terminal hair and vegetative cell of the branch.
- This growth is called trichothallic growth.
- □ Prostrate system: It is apical

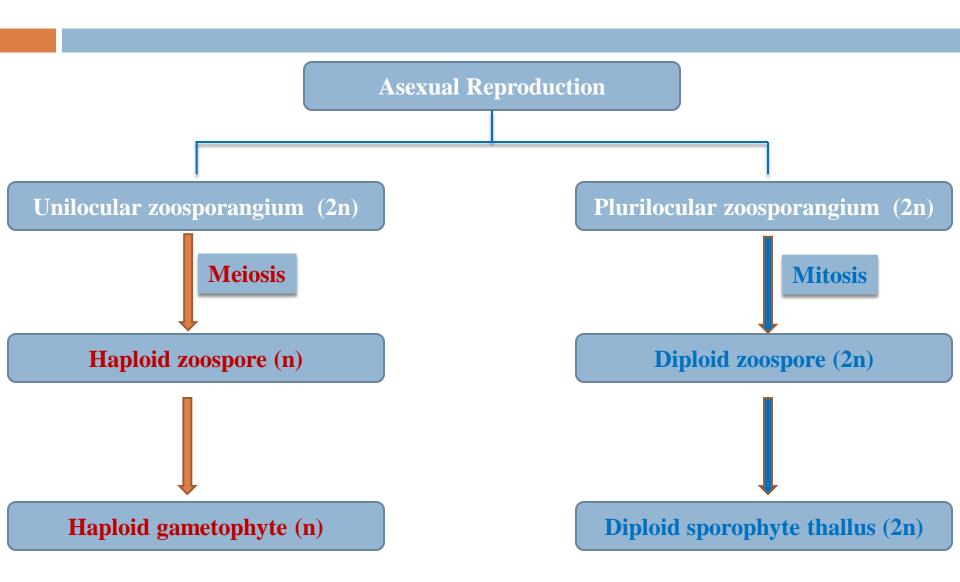

Reproduction

- *Ectocarpus* reproduces by both asexual and sexual methods.
- The diploid plants produce unilocular and plurilocular sporangia either on the same plant or on separate plants.
- □ Asexual reproduction:
 - The diploid plants produce: either on the same plant or on separate plants.
 - Unilocular and
 - Plurilocular sporangia
 - **The plurilocular sporangium:**
 - Divided into cubical cells (as many as 660)
 - Each containing a motile cell.
 - The plurilocular sporangia (diploid filaments) produce zoospores
 - Zoospores settle down and germinate to produce diploid filaments like the parent.

Plurilocular sporangia

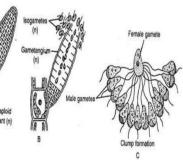
Reproduction: Asexual...

Unilocular sporangia:


- A unilocular sporangium develops from a terminal cell of a short lateral branch.
- The nuclei divide *meiotically*.
- Meiozoospore is pyriform and biflagellate.
- The flagella are **laterally** inserted and are of **unequal** size.
- The larger one directed forward and the smaller one is directed backward.
- A small **perforation** occurs at the **apex** of the unilocular sporangium, and up to 32 haploid zoospores ooze out of the sporangium in a gelatinous matrix.
- The perforation is small, and zoospores are relatively large, being twice the size of gametes and zoospores from plurilocular sporangia.
- The zoospores initially swim in a straight pattern, then display circling movements as they explore appropriate surfaces for settling.
- The zoospores germinate within 2 to 3 hours to produce haploid filaments.

Unilocular sporangia

Unilocular sporangia



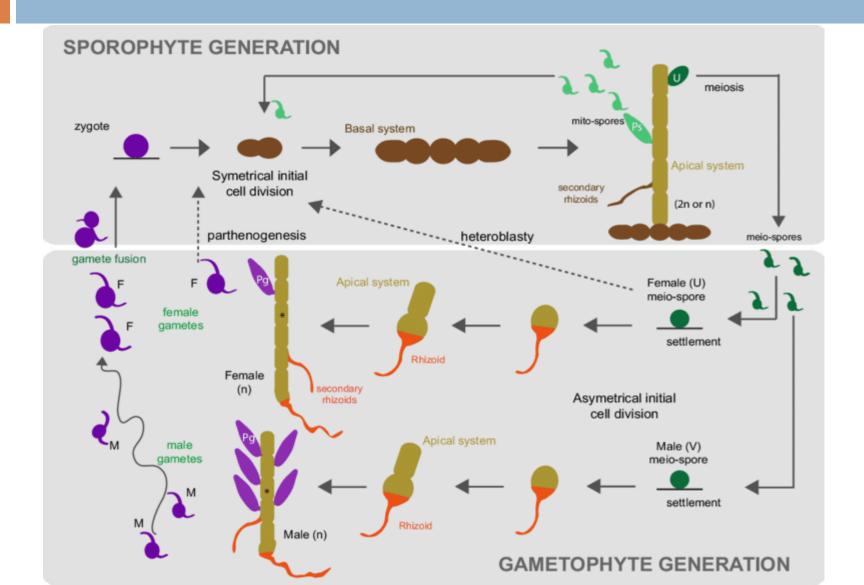
Reproduction: Sexual reproduction

- Sexual reproduction takes place by
 - *Isogamous* and homothallic: *E. pusilus* and *E. globifer* etc.
 - **Physiological anisogamous** and Heterothallic: *Ectocarpus secundus*.
 - Morphological Anisogamy: E. secundus (gametes are produced in different gametangia: microgametangia and megagametangia).
- The gametes are produced in plurilocular gametangia on the haploid filaments:
 - **Smaller than those on the diploid filaments,**
 - They produce either gametes or zoospores .
 - The motile gametes are all of the **same size** but **differ physiologically**.
 - The female gametes settle down about 5 minutes after liberation and secrete a sexual hormone called *ectocarpene* [all cis-1-(cycloheptadien-2,5-yl)-1-butene].

Reproduction: Sexual reproduction.....

- The **motile male** gametes swim in circular paths on encountering *ectocarpene*.
- As soon as the female gamete is reached, a firm contact is established between the apical part of the front flagellum of the male gamete and the plasma membrane of the female gamete.
- The anchoring flagellum contracts.
- Therefore, the body of the male gamete comes in contact with that of the female gamete and the fusion takes place.
- This phenomenon is called *clump formation*.
- The posterior ends of the two gametes fuse to form the zygote.
- The zygotes take 2 to 3 days to germinate.
- Some of the unfused gametes have the ability to germinate parthenogenetically to give rise to haploid filaments again

Alternation of Generations


□ *Ectocarpus* shows isomorphic alternation of generations.

- Sporophyte: The sporophyte is diploid and it develops two types of sporangia.
 - Plurilocular sporangia:
 - Zoospores are produced by mitosis (mitozoospores) in plurilocular sporangia.
 - The mitozoospores germinate into a **diploid** sporophyte.
 - These spores cause reduplication of **sporophyte** generation.

Unilocular sporangia:

- The zoospores are produced **meiotically** (**meiozoospores**).
- The meiozoospores germinate to give rise a **haploid** gametophyte plant.
- Gametophyte: It develops plurilocular gametangia.
 - These gametophytes are similar to the sporophyte in morphology.
 - Haploid gametes are produced in the gametangia.
 - These gametes fuse to form a diploid zygote.
 - Zygote germinates into a diploid sporophyte plant.
 - Parthenogenesis: the gametes from plurilocular gametangia form new gametophyte generation.

Alternation of Generations

Economic Importance:

The important phycocolloids algin and fucoidin are secondary metabolites used in manufacture of

Beer,

- Tooth paste
- Ice-cream
- Paint
- Shaving creams
- Medicines
- □ Soapes.